Treatment




Treatment of TB uses antibiotics to kill the bacteria. Effective TB treatment is difficult, due to the unusual structure and chemical composition of the mycobacterial cell wall, which hinders the entry of drugs and makes many antibiotics ineffective.

Active TB is best treated with combinations of several antibiotics to reduce the risk of the bacteria developing antibiotic resistance. The routine use of rifabutin instead of rifampicin in HIV-positive people with tuberculosis is of unclear benefit as of 2007update.

Latent

Latent TB is treated with either isoniazid or rifampin alone, or a combination of isoniazid with either rifampicin or rifapentine.

The treatment takes three to nine months depending on the medications used. People with latent infections are treated to prevent them from progressing to active TB disease later in life.

Education or counselling may improve the latent tuberculosis treatment completion rates.

New onset

The recommended treatment of new-onset pulmonary tuberculosis, as of 2010update, is six months of a combination of antibiotics containing rifampicin, isoniazid, pyrazinamide, and ethambutol for the first two months, and only rifampicin and isoniazid for the last four months. Where resistance to isoniazid is high, ethambutol may be added for the last four months as an alternative. Treatment with anti-TB drugs for at least 6 months results in higher success rates when compared with treatment less than 6 months; even though the difference is small. Shorter treatment regimen may be recommended for those with compliance issues. There is also no evidence to support shorter anti-tubeculosis treatment regimen when compared to 6 months treatment regimen.

Recurrent disease

If tuberculosis recurs, testing to determine which antibiotics it is sensitive to is important before determining treatment. If multiple drug-resistant TB (MDR-TB) is detected, treatment with at least four effective antibiotics for 18 to 24 months is recommended.

Medication administration

Directly observed therapy, i.e., having a health care provider watch the person take their medications, is recommended by the World Health Organization (WHO) in an effort to reduce the number of people not appropriately taking antibiotics. The evidence to support this practice over people simply taking their medications independently is of poor quality. There is no strong evidence indicating that directly observed therapy improves the number of people who were cured or the number of people who complete their medicine. Moderate quality evidence suggests that there is also no difference if people are observed at home versus at a clinic, or by a family member versus a health care worker. Methods to remind people of the importance of treatment and appointments may result in a small but important improvement. There is also not enough evidence to support intermittent rifampicin-containing therapy given two to three times a week has equal effectiveness as daily dose regimen on improving cure rates and reducing relapsing rates. There is also not enough evidence on effectiveness of giving intermittent twice or thrice weekly short course regimen compared to daily dosing regimen in treating children with tuberculosis.

Medication resistance

Primary resistance occurs when a person becomes infected with a resistant strain of TB. A person with fully susceptible MTB may develop secondary (acquired) resistance during therapy because of inadequate treatment, not taking the prescribed regimen appropriately (lack of compliance), or using low-quality medication. Drug-resistant TB is a serious public health issue in many developing countries, as its treatment is longer and requires more expensive drugs. MDR-TB is defined as resistance to the two most effective first-line TB drugs: rifampicin and isoniazid. Extensively drug-resistant TB is also resistant to three or more of the six classes of second-line drugs. Totally drug-resistant TB is resistant to all currently used drugs. It was first observed in 2003 in Italy, but not widely reported until 2012, and has also been found in Iran and India. Bedaquiline is tentatively supported for use in multiple drug-resistant TB.

XDR-TB is a term sometimes used to define extensively resistant TB, and constitutes one in ten cases of MDR-TB. Cases of XDR TB have been identified in more than 90% of countries. There is some efficacy for linezolid to treat those with XDR-TB but side effects and discontinuation of medications were common.

For those with known rifampicin or MDR-TB, Genotype® MTBDRsl Assay performed on culture isolates or smear positive specimens may be useful to detect second-line anti-tubercular drug resistance.

Comments

Popular posts from this blog

15) Republic Day 2020 Parade SHOWS: Colourful tableaux, daredevilry, army might on display

Tuberculosis

Causes